Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 8884, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264055

RESUMO

Densification of cities and urban population contributes to increased runoff and suspended solids and alteration of the urban water cycle. Nowadays, Blue-Green Infrastructure is promoted to increase a city's resilience to floods; however, stormwater drainage systems, supported with retention tanks are still important in protecting urban areas against floods. Sediment accumulation in stormwater infrastructure relates to an issue of pollutants such as heavy metals, nutrients etc. Research on the origin of the pollutants associated with the suspension and ultimately sediment accumulated in sewage can bring new insights about processes in urban catchment areas. This is the first study, which is focused on the analysis of stable carbon and nitrogen isotopes in bottom sediments collected from municipal retention tanks to verify the origin of the deposited pollutants immediately after pluvial floods. The research was additionally extended with water quality analyzes immediately after three types of weather: a dry period, typical precipitation (< 30 mm) and torrential rainfalls (2 events with daily precipitation over 30 mm which caused pluvial flooding of the city area). Analyses of sediments indicated that the main source of carbon and nitrogen in the bottom of the retention tanks had been brought with stormwater runoff from the city area. Organic nitrogen fertilizers appeared to be the main source of nitrogen, while the sources of organic carbon were mixed: C3 land plants, wood, and oil. Additionally, it was found that torrential rainfall caused a 23-fold increase of N-NO3 concentration, a sevenfold increase of P-PO4 concentration, and an over fivefold increase of concentration of organic matter, in comparison to typical precipitation.

2.
Materials (Basel) ; 14(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947283

RESUMO

Every year, huge amounts of bottom sediments are extracted worldwide, which need to be disposed. The recycling of bottom sediments for soil fertilization is in line with the long-promoted circular economy policy and enables the use of micro and macronutrients accumulated in sediments for soil fertilization. When considering potential agricultural reuse of the dredge sediments, the first necessary step should be to analyze whether the heavy metal content meets the obligatory criteria. Then, the contents of valuable elements required for plant growth and their ratios should be assessed. In this study, the content of nitrogen, organic carbon, phosphorus, and potassium was tested and iron, sulfur, calcium, and magnesium were also analyzed along vertical profiles of sediments extracted from four urban retention tanks in Gdansk (Poland). The sediments were indicated to have a low content of nutrients (Ntot 0.01-0.52%, Corg 0.1-8.4%, P2O5 0.00-0.65%, K 0.0-1.0%), while being quite rich in Fe and S (0.2-3.3%, 0.0-2.5%, respectively). The C/N ratio changed in the range of 17.4-28.4, which proved good nitrogen availability for plants. The mean values of the Fe/P ratio were above 2.0, which confirms that phosphorus in the sediments would be available to the plants in the form of iron phosphate. To summarize, the bottom sediments from municipal retention reservoirs are not a perfect material for soil fertilization, but they are a free waste material which, when enriched with little cost, can be a good fertilizer. Future research should focus on cultivation experiments with the use of sediments enriched with N, P, Corg.

3.
Geobiology ; 19(6): 631-641, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34143930

RESUMO

Norwegian fjords have been recently recognized as hot spots for carbon burial due to the large amounts of terrestrial organic matter delivered to fjord sediments, as well as the high sediment accumulation rates. Here, we present the first data on the contribution of benthic foraminiferal inorganic carbon to the sediments of three Norwegian fjords. Our study shows that calcareous foraminifera, which are among the most abundant calcifying organisms in the modern global oceans, can constitute between 15% and 33% of inorganic carbon accumulated in the sediments of the two studied southern Norwegian fjords (Raunefjorden and Hjeltefjorden). In a northern Norwegian fjord (Balsfjorden), the contribution of calcareous foraminifera to the inorganic carbon pool is smaller (<1%) than the one observed in southern fjords. We also found that the amount of foraminifera-derived carbon is primarily dependent on the species composition of the foraminifera community. Large calcareous foraminifera species, despite a lower number of individuals, constitute, on average, 13%-29% of the inorganic carbon in the two southern Norwegian fjords, while the contribution of small, highly abundant species does not exceed 4% of the inorganic carbon pools in the sediments. Calcareous foraminifera species that are indicative of dysoxic conditions have been found to have low inorganic carbon contents per specimen compared to other analysed similar-sized calcareous foraminifera species. This relationship most likely exists due to the thin test walls of these foraminifera species, which may facilitate gas exchange. The results of our case study suggest that the climate-driven formation of near-bottom low-oxygen zones may lead to the dominance of foraminifera associated with dysoxic conditions and, in consequence, to the decrease of foraminifera-derived inorganic carbon. However, to properly analyse the contribution of carbon from thin-walled foraminifera to the sedimentary carbon pool, further studies analysing a broader range of these species is needed.


Assuntos
Foraminíferos , Carbono , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Humanos
4.
J Environ Sci (China) ; 68: 55-64, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29908745

RESUMO

Mercury (Hg) is a neurotoxic metal which can enter into the human organism mainly by fish consumption, skin and transpiration. In the coastal zone of the southern Baltic Sea, rivers are the main source of Hg. The Polish region represents the largest proportion of the Baltic Sea catchment and this research included four rivers of the Baltic watershed: the Reda, Zagórska Struga, Kacza and Gizdepka. The samples were collected in the years 2011-2013. Total and particulate Hg concentration in these rivers were measured. Due to intensive rain, deposited mercury on the catchment area was washed out into the riverines water and introduced into the Baltic Sea. Consequently, the load of Hg increased three times. Additionally, the intensive dry atmospheric deposition during heating season caused the increase of the concentration of particulate Hg in the river water even by 85%. The research confirmed the role of the river flow magnitude in the load of mercury introduced into the sea by rivers. Moreover, a high variability of mercury concentration was connected to the additional sources such as the chemicals containing Hg and no municipal sewage system. The analysis of stable isotopes indicated that the SPM contained terrestrial organic matter; however, there was no clear correlation between Hgtot, Corg and Ntot concentrations and δ13C, δ15N, C/N in particulate matter.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Poluentes Químicos da Água/análise , Clima , Polônia , Chuva , Rios/química , Poluição Química da Água/estatística & dados numéricos
5.
Mar Pollut Bull ; 118(1-2): 354-367, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28318562

RESUMO

The coastal regions of inland seas are particularly vulnerable to Hg pollution. An important carrier of toxic Hg in the marine environment is suspended matter originating from multiple sources. The present study was conducted in the Gulf of Gdansk and its adjoining land in the years 2011-2013. The results indicated that the HgSPM (Hg bound with suspended particulate matter) concentrations varied horizontally and vertically and were dependent on the water dynamics and the composition of organic matter. Conditions favourable for the accumulation of matter and adsorption of reactive gaseous mercury led to increasing HgSPM levels, which are especially hazardous in the case of semi-enclosed areas such as estuaries. These conditions also increase the Hg loads into the trophic chain through suspension feeders. Moreover, the HgSPM concentration was significantly affected by seasonal phenomena (mainly coastal erosion) and the quantity and quality of primary production (phytoplankton blooms, mainly Mesodinium rubrum).


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Poluentes Químicos da Água/análise , Oceano Atlântico , Estuários , Material Particulado/análise , Fitoplâncton , Polônia , Estações do Ano
6.
Int Microbiol ; 16(1): 45-52, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24151781

RESUMO

The density and spatial distribution of benthic viruses and prokaryotes in relation to biotic and abiotic factors were investigated in sediment cores collected in Hornsund, a permanently cold fjord on the West coast of Svalbard, Norway. The cores were obtained from the mouth of the fjord to the central basin, along a longitudinal transect. The results of our analyses showed lower densities of viruses (0.2 x 10(8) to 5.4 x 10(8) virus-like particles/g) and lower virus-to-prokaryote ratios (0.2-0.6, with the exception of the uppermost layer in the central basin, where the ratio was about 1.2) at the study site than generally found in the temperate areas, despite the relatively high organic matter content in subpolar sediments. Variations in benthic viral and prokaryote abundances along gradients of particle sedimentation rates, phytopigment concentrations, and macrobenthic species composition together suggested the influence of particle sedimentation and macrobenthic bioturbation on the abundance and spatial distribution ofprokaryotes and viruses in cold habitats.


Assuntos
Bactérias/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Vírus/crescimento & desenvolvimento , Temperatura Baixa , Demografia , Ecossistema , Noruega
7.
Int. microbiol ; 16(1): 45-52, mar. 2013. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-114744

RESUMO

The density and spatial distribution of benthic viruses and prokaryotes in relation to biotic and abiotic factors were investigated in sediment cores collected in Hornsund, a permanently cold fjord on the West coast of Svalbard, Norway. The cores were obtained from the mouth of the fjord to the central basin, along a longitudinal transect. The results of our analyses showed lower densities of viruses (0.2 x 10(8) to 5.4 x 10(8) virus-like particles/g) and lower virus-to-prokaryote ratios (0.2-0.6, with the exception of the uppermost layer in the central basin, where the ratio was about 1.2) at the study site than generally found in the temperate areas, despite the relatively high organic matter content in subpolar sediments. Variations in benthic viral and prokaryote abundances along gradients of particle sedimentation rates, phytopigment concentrations, and macrobenthic species composition together suggested the influence of particle sedimentation and macrobenthic bioturbation on the abundance and spatial distribution ofprokaryotes and viruses in cold habitats (AU)


No disponible


Assuntos
Fauna Bentônica/análise , Células Procarióticas/microbiologia , Vírus/crescimento & desenvolvimento , Ambiente Marinho/análise , Clima Frio , Microbiologia da Água , Noruega , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...